Sonic Hedgehog Signaling Confers Ventral Telencephalic Progenitors with Distinct Cortical Interneuron Fates

نویسندگان

  • Qing Xu
  • Lihua Guo
  • Holly Moore
  • Ronald R. Waclaw
  • Kenneth Campbell
  • Stewart A. Anderson
چکیده

Interneurons in the cerebral cortex regulate cortical functions through the actions of distinct subgroups that express parvalbumin, somatostatin, or calretinin. The genesis of the first two subgroups requires the expression of NKX2.1, which is maintained by SHH signaling during neurogenesis. In this paper, we report that mosaic elimination in the medial ganglionic eminence (MGE) of Smo, a key effector of SHH signaling, reveals that MGE progenitors retain a remarkable degree of plasticity during the neurogenic period. SHH signaling prevents the upregulation of GSX2 and conversion of some MGE progenitors to a caudal ganglionic eminence-like, bipolar calretinin-expressing cell fate that is promoted by GSX2. In addition, a higher level of SHH signaling promotes the generation of the somatostatin-expressing interneuron at the expense of parvalbumin-expressing subgroup. These results indicate that cortical interneuron diversity, a major determinant of cortical function, is critically influenced by differential levels of SHH signaling within the ventral telencephalon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sonic hedgehog and bone morphogenetic protein regulate interneuron development from dorsal telencephalic progenitors in vitro.

Cortical progenitors are competent to produce interneurons, but do not generate large numbers of interneurons in vivo under normal circumstances. This could reflect the absence of an inductive signal in the environment of the dorsal telencephalon and/or the presence of an inhibitory signal. To determine whether either or both mechanisms regulate interneuron generation, progenitors in dorsomedia...

متن کامل

Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon.

Fate determination in the mammalian forebrain, where mature phenotypes are often not achieved until postnatal stages of development, has been an elusive topic of study despite its relevance to neuropsychiatric disease. In the ventral telencephalon, major subgroups of cerebral cortical interneurons originate in the medial ganglionic eminence (MGE), where the signaling molecule sonic hedgehog (Sh...

متن کامل

Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells.

The directed differentiation of forebrain neuronal types from human embryonic stem cells (hESCs) has not been achieved. Here, we show that hESCs differentiate to telencephalic progenitors with a predominantly dorsal identity in a chemically defined medium without known morphogens. This is attributed to endogenous Wnt signaling, which upregulates the truncated form of GLI3, a repressor of sonic ...

متن کامل

Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification.

Sonic hedgehog (Shh) directs the development of ventral cell fates, including floor plate and V3 interneurons, in the mouse neural tube. Here, we show that the transcription factors Gli2 and Gli3, mediators of Shh signaling, are required for the development of the ventral cell fates but make distinct contributions to controlling cell fates at different locations along the rostral-caudal axis. M...

متن کامل

Ectopic sonic hedgehog signaling impairs telencephalic dorsal midline development: implication for human holoprosencephaly.

Holoprosencephaly (HPE) is the most common developmental anomaly of the human forebrain, and in its severe form, the cerebral hemispheres fail to completely separate into two distinct halves. Although disruption of ventral forebrain induction is thought to underlie most HPE cases, a subset of HPE patients exhibits preferential dysgenesis of forebrain dorsal midline structures with unknown etiol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2010